
October 1998 The Delphi Magazine 19

Building A Parsing Component
by Paul Warren

function TParser.NextToken: Char;
begin
SkipBlanks;
FTokenPtr := FSourcePtr;
FToken := FSourcePtr^;
if FToken <> toEOF then Inc(FSourcePtr);
Result := FToken;

end;

➤ Listing 1

procedure TParser.SkipBlanks;
begin
while True do begin
case FSourcePtr^ of
#0 :
begin
ReadBuffer;
if FSourcePtr^ = #0 then
Exit;

Continue;
end;

#10 : Inc(FSourceLine);
#33..#255 : Exit;

end;
Inc(FSourcePtr);

end;
end;

➤ Listing 2

The explosion of web and
intranet technologies has

resulted in file parsing becoming
the most common task I have to do
for my clients (after database work
that is). I am asked to parse data
out of log files, count and manipu-
late tags in html, read and write
comma separated files and, of
course, create html on the fly.

Until recently I would write pars-
ing code as required, but clearly,
for such a common task, a reus-
able, flexible parser is needed. You
may recall Marco Cantù intro-
duced TParser in Issue 23 and I
used TParser in Issue 33. Both
Marco and I commented on
TParser’s utility and deficiencies.
Our esteemed Editor, somewhat
tongue in cheek, challenged me to
create an improved version. Since I
had a pressing need for a reusable
parser I took him up on the
challenge.

Design Considerations
I wanted a parser class that could
duplicate the action of TParser (so
my old code would still work) but
that I could extend to handle the
comments in source code. In addi-
tion, I needed to create descendant
classes that would be capable of
other parsing tasks. As a final con-
sideration, conversion to a compo-
nent might also be desirable.

As is usually the case, I started
by studying the code (found in the
classes unit). One thing I will say
about TParser, it is a lot easier to
use than it is to understand.

Stripped to the bare essentials,
TParser accepts a stream and
pages it into a PChar buffer. Then,
using a series of buffer pointers, it
reads through the buffer to see if
certain conditions are met. If they
are, a token is returned indicating
which condition has been met. I
know this is an oversimplification
but I’ll go into more detail later.

The grunt work is done in a
horrible looking function called
NextToken. I noticed that if you

remove all the case statements,
while True do loops and if..then ..
Break statements in NextToken the
function reduces to Listing 1:
NextToken increments FSourcePtr
until it finds toEOF.

It looks like the stripped down
TParser could serve as an ancestor
for a hierarchy of parsers: pre-
cisely what we need. Before going
to work, though, we should take a
look at TParser in more detail.

Understanding TParser
In the constructor TParser accepts
a stream for parsing, allocates
memory for FBuffer and sets
FBufPtr, FSourcePtr and FSourceEnd
to point to FBuffer. FBufEnd is set to
point to FBuffer + ParseBufSize.
FBuffer[0] is set to #0 to serve as an
end of buffer marker and finally
NextToken is called once.

All these variables are of type
PChar and as such can serve several
functions. They can hold data as
FBuffer does, they can point to
data, they can be treated as
operands and they can be
de-referenced. Which proves even
something as annoying as a PChar
can be useful.

In the stripped down version of
NextToken the first line is a call to
SkipBlanks. SkipBlanks (Listing 2)
uses a case statement inside an
infinite loop to distinguish
between different characters
pointed to by the de-referenced
FSourcePtr.

When called by the constructor
via NextToken the character being
pointed to is clearly #0. In this case
a call is made to ReadBuffer and if
the result is still #0, indicating an
empty stream, then we Exit, other-
wise we continue with the next
iteration of while true do. Charac-
ters between #0 and #9 and #11 and
#32 are ignored by incrementing
FSourcePtr. Future calls to
SkipBlanks read data into the
buffer as needed.

ReadBuffer (Listing 3) is the
stream paging engine. To really
understand how ReadBuffer works
you need a table of pointer
addresses which I have generated
using writeln output to a text file.
As you can see from Table 1
FBuffer and FBufEnd are constant,
note how FBuffer is used as both a
data structure and a pointer (as
discussed earlier).

20 The Delphi Magazine Issue 38

procedure TParser.ReadBuffer;
var
Count: Integer;

begin
Inc(FOrigin, FSourcePtr - FBuffer); { used for SourcePos }
FSourceEnd[0] := FSaveChar;
Count := FBufPtr - FSourcePtr;
if Count <> 0 then Move(FSourcePtr[0], FBuffer[0], Count);
FBufPtr := FBuffer + Count;
Inc(FBufPtr, FStream.Read(FBufPtr[0], FBufEnd - FBufPtr));
FSourcePtr := FBuffer;
FSourceEnd := FBufPtr;
if FSourceEnd = FBufEnd then
begin
FSourceEnd := LineStart(FBuffer, FSourceEnd - 1);
if FSourceEnd = FBuffer then Error(SLineTooLong);

end;
FSaveChar := FSourceEnd[0];
FSourceEnd[0] := #0;

end;

➤ Listing 3

➤ Table 1

Fbuffer FBufPtr FSrcPtr FSrcEnd FBufEnd Pos Occurred

9194444 9194444 9194444 9194444 9198540 0 On create

9194444 9194444 9194444 9194444 9198540 0 Before read

9194444 9198540 9194444 9194444 9198540 4096 After read

9194444 9194508 9198476 9198476 9198540 4096 Before read

9194444 9198540 9198476 9198476 9198540 8128 After read

9194444 9194454 9198530 9198530 9198540 8128 Before read

9194444 9198282 9198530 9198530 9198540 11956 After read

9194444 9194444 9198282 9198282 9198540 11956 Before read

9194444 9194444 9198282 9198282 9198540 11956 After read

FBufPtr, FSourcePtr and
FSourceEnd initially point to
FBuffer, as already mentioned, and
remain in this state until after the
first call to FStream.Read. After the
stream read, FBufPtr points 4096
bytes (ParseBufSize) into the
buffer and FStream.Position is
4096 as well. FSourcePtr and
FSourceEnd still point to the
beginning of the buffer.

Next, SourceEnd is moved to coin-
cide with FBufPtr and is then
checked against FBufEnd. If they are
equal FSourceEnd is backed up to
the last CRLF in the buffer by the
function LineStart (from the
Classes unit). If there is no CRLF
pair a LineTooLong exception is
raised.

Finally, the character at
FSourceEnd[0] is saved and
replaced with a #0 marker. When
the next call to ReadBuffer occurs
the saved character is replaced
and the whole operation starts
over. You can follow these pointer
movements in the remaining lines
of Table 1.

All this probing into TParser’s
inner workings was necessary to
create a custom base class that pre-
serves the critical functionality of
TParser but allows us to modify the
behaviour in descendant classes.
All the source is naturally included
on this months disk so I won’t
reproduce TCustomParser here.

TTextParser
The next logical step is to create a
descendant that can parse a text
file into individual words. If you’re
asking why at this point, shame on
you: this would be perfect for a
spell checker or for counting
words in text files.

Only NextToken has to be
changed to parse text files into
their individual words.

In overriding NextToken you have
to realise we are examining charac-
ters to see if they meet certain
criteria and only if they don’t are
we then going to call inherited.
Note that, unlike a procedure, you
must set Result := inherited
NextToken when you do call
inherited.

Listing 4 shows the TTextParser.
NextToken function. FTokenPtr is set

{ TTextParser }
function TTextParser.NextToken: Char;
begin
SkipBlanks;
FTokenPtr := FSourcePtr;
case FSourcePtr^ of
'A'..'Z', 'a'..'z', '_':
begin
Inc(FSourcePtr);
while True do
case FSourcePtr^ of
'A'..'Z', 'a'..'z', '0'..'9', '_': Inc(FSourcePtr);
'''': begin { apostrophies }

if (FSourcePtr+1)^ in ['A'..'Z', 'a'..'z', '0'..'9', '_'] then
Inc(FSourcePtr)

else Break;
end;

'-': begin { hyphenated words }
if (FSourcePtr+1)^ in ['A'..'Z', 'a'..'z', '0'..'9', '_'] then
Inc(FSourcePtr)

else Break;
end;

else Break;
end;

FToken := toSymbol;
Result := FToken;

end;
'-', '0'..'9':
begin
Inc(FSourcePtr);
while FSourcePtr^ in ['0'..'9'] do Inc(FSourcePtr);
FToken := toInteger;
Result := FToken;
while FSourcePtr^ in ['0'..'9', '.', 'e', 'E', '+', '-'] do
begin
Inc(FSourcePtr);
FToken := toFloat;
Result := FToken;

end;
end;

else Result := inherited NextToken;
end;

end;

➤ Listing 4

22 The Delphi Magazine Issue 38

equal to FSourcePtr so the
TokenString function can return
the string FSourcePtr-FTokenPtr.
The first level of case statements
checks to see whether a character
is a number or letter and thus of
interest. If not it is passed on to
inherited. For characters that are
of interest we increment
FSourcePtr and keep examining
characters inside a loop. When we
finally hit a character not of inter-
est we set FToken appropriately,
break the loop and exit.

TPasParser
TTextParser comes close to dupli-
cating the functionality of Inprise’s
TParser. It already tokenizes inte-
gers and floating point numbers.
The handling of symbols is
different though, and there is no
support for tokenizing Pascal
strings.

To correct the behaviour of
TTextParser we have to declare
TPasParser as a descendant of
TTextParser and override Next-
Token. Since TTextParser already
handles integers and floats we can
let these pass through to inherited.
Unlike TParser, TTextParser can

accept single quotes so we can’t
pass the remaining characters
along. If you look at Listing 5 and
compare it to TParser.NextToken
you’ll see the code is the same
except for a bug fix and the com-
ments around the case selector.

TPasParser can be used in place
of TParser without any changes
to your code, except of course
the instantiation and including
NewParse in the uses clause.

A Component Wrapper
Before I introduce the other pars-
ers shown in Figure 1, I want to
create a component to simplify
using the parser class.
ThgsParser is a component ‘wrap-
per’ for a parser class. The most
important feature of this rather
simple component is the OnParse
event, a custom event triggered on
every call to NextToken. This avoids
the user having to write a code
block to use the parser.

The other important feature is
the use of a class reference so the
desired parser can be created. One
thing I don’t want is five more com-
ponents on my palette. I love com-
ponents but you can have too
much of a good thing. Using a class
reference ThgsParser can create

TCustomParser

TCSVParser TTextParser

TPasParser

TEnhPasParser

THtmlParser

➤ Figure 1: Class hierarchy diagram.

any parser type descended from
TCustomParser. Listing 6 is the
complete code for ThgsParser.

As a point of interest notice the
SetParseStream method. This is a
property handling method nor-
mally used to set the property
value. In this case setting the prop-
erty actually executes the parser.
While this is unusual it is also
necessary.

Since the TCustomParser class
takes the stream in its constructor
and executes NextToken once, we
can’t create an instance of a

function TPasParser.NextToken: Char;
var I: integer;
begin
SkipBlanks;
FTokenPtr := FSourcePtr;
case FSourcePtr^ of
'A'..'Z', 'a'..'z', '_':
begin
Inc(FSourcePtr);
while FSourcePtr^ in
['A'..'Z', 'a'..'z', '0'..'9', '_'] do
Inc(FSourcePtr);

FToken := toSymbol;
Result := FToken;

end;
'#', '''':
begin
FStringPtr := FSourcePtr;
while True do
case FSourcePtr^ of
'#':
begin
Inc(FSourcePtr);
I := 0;
while FSourcePtr^ in ['0'..'9'] do begin
I := I * 10 + (Ord(FSourcePtr^) -
Ord('0'));

Inc(FSourcePtr);
end;
FStringPtr^ := Chr(I);
Inc(FStringPtr);

end;
'''':
begin
Inc(FSourcePtr);
while True do begin
case FSourcePtr^ of
#0, #10, #13:
Error(SInvalidString);

'''':
begin
Inc(FSourcePtr);
if FSourcePtr^ <> '''' then Break;

end;
end;
FStringPtr^ := FSourcePtr^;
Inc(FStringPtr);
Inc(FSourcePtr);

end;
end;

else
Break;

end;
FToken := toString;
Result := FToken;

end;
'$':
begin
FToken := FSourcePtr^; { assume NOT an integer }
Result := FToken;
Inc(FSourcePtr);
while true do begin
case FSourcePtr^ of
'0'..'9', 'A'..'F', 'a'..'f': Inc(FSourcePtr);
else Break;

end;
FToken := toInteger;
Result := FToken;

end;
end;

(* '-', '0'..'9':
begin
Inc(FSourcePtr);
while FSourcePtr^ in ['0'..'9'] do Inc(FSourcePtr);
FToken := toInteger;
Result := FToken;
while FSourcePtr^ in
['0'..'9', '.', 'e', 'E', '+','-'] do begin
Inc(FSourcePtr);
FToken := toFloat;
Result := FToken;

end;
end; *)

else Result := inherited NextToken;
end;

end;

➤ Listing 5

October 1998 The Delphi Magazine 23

TCustomParser class until we’re
ready to use it. So without chang-
ing the constructor, which I didn’t
want to do, legacy code and all
that, this was the best solution.

Adding More Parsers:
TEnhPasParser
TPasParser still suffers from the
limitations pointed out in the ear-
lier articles. Much more useful is
TEnhPasParser which I have made
aware of comments. This is the
class you should use if you want to
upgrade my packing list utility
from Issue 33 or Marco Cantù’s
PasToWeb utility: see the sidebar
for details.

The secret to handling com-
ments is to recognize that they can
span multiple lines. All the
tokenization we’ve looked at so far
has to occur on one line so
SkipBlanks gets called at least once
per line. Since ReadBuffer always
moves FSouceEnd to a CRLF pair
NextToken can never attempt to
read beyond the buffer end. When
tokenizing comments this
changes. Now we have the chance
of reading beyond the buffer end
and generating an access violation.
To avoid this problem we can
check for a #0 FSourceEnd marker,

Pascal To HTML, Source Cross-Referencing
And File Packing List Projects
To use the new parsers in Marco Cantù’s Crossref Delphi source
cross-referencing project (see Issue 30) and for my own packing list pro-
ject (see Issue 33), all you need to do is substitute the newparse unit
and redeclare TParser as TEnhPasParser.

For Marco’s PasToWeb utility (see Issue 23) do the same as above and
change the MakeCommentLegal function to the following:

You could also change the constructor from Create to CreateNewand call
inherited Create if you want to avoid the compiler warning, although
not doing so has no adverse effects that I could detect.

function TCodeParser.MakeCommentLegal (S: String): string;
var
I: Integer;

begin
Result := '{'; {prepend a brace}
// for each character of the string
for I := 1 to Length (S) do
AppendStr (Result, CheckSpecialToken(S[I]));

AppendStr (Result, ' }'); {append a brace}
end;

unit Parsecmp;
interface
uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Controls, NewParse;

type
TParserType = (ptCSV, ptText, ptPascal, ptEnhPas, ptHtml);
TOnParseEvent = procedure(Sender: TObject; Token: char) of
object;

ThgsParser = class(TComponent)
private
ParserRef: TParserClass;
FParser: TCustomParser;
FParserType: TParserType;
FParseStream: TStream;
FOnParse: TOnParseEvent;
procedure SetParseStream(Value: TStream);
procedure SetOnParse(Value: TOnParseEvent);

protected
public
constructor Create(AOwner: TComponent); override;
property ParseStream: TStream write SetParseStream;

published
property ParserType: TParserType read FParserType
write FParserType default ptHtml;

property OnParse: TOnParseEvent read FOnParse
write SetOnParse;

end;
procedure Register;
implementation
{$IFDEF WIN32}
{$R PARSECMP.D32}

{$ELSE}
{$R PARSECMP.D16}

{$ENDIF}
constructor ThgsParser.Create(AOwner: TComponent);
begin

inherited Create(AOwner);
FParserType := ptHtml;

end;
procedure ThgsParser.SetParseStream(Value: TStream);
begin
{ assign stream - note must be freed by caller }
FParseStream := Value;
case FParserType of { check the parser type }
{ set class reference according to parser type }
ptCSV: ParserRef := TParserClass(TCSVParser);
ptText: ParserRef := TParserClass(TTextParser);
ptPascal: ParserRef := TParserClass(TPasParser);
ptEnhPas: ParserRef := TParserClass(TEnhPasParser);
ptHtml: ParserRef := TParserClass(THtmlParser);

end;
{ create parser instance }
FParser := ParserRef.Create(FParseStream);
try
{ parse file }
while FParser.Token <> toEOF do begin
FParser.NextToken;
if Assigned(FOnParse) then
FOnParse(FParser, FParser.Token);

end;
finally
FParser.Free; { free parser }

end;
end;
procedure ThgsParser.SetOnParse(Value: TOnParseEvent);
begin
FOnParse := Value;

end;
procedure Register;
begin
RegisterComponents('HomeGrown', [ThgsParser]);

end;
end.

➤ Listing 6
call ReadBuffer, and Break if we find
one.

Unfortunately this isn’t enough
since the #0 can also represent the
end of a stream. Therefore we need
to check FSourcePtr^ again after
the call to ReadBuffer. If it is still #0
we can break execution. As you can
see in Listing 7 we also have to
increment FSourceLine at line feeds
and break execution when the
comment is closed.

THtmlParser
THtmlParser descends from
TTextParser since it doesn’t need
the extra functionality of the
source parsers.

This class returns a token of
toOpenTag or toCloseTag when it
encounters tags. When not
encountering html tags THtml-
Parser returns toSymbol, toInteger
and toFloat the way TTextParser
would. When Token is toOpenTag or

24 The Delphi Magazine Issue 38

function TEnhPasParser.NextToken: Char;
begin
SkipBlanks;
FTokenPtr := FSourcePtr;
case FSourcePtr^ of
'{':
begin { comment or compiler directive... }
FStringPtr := FSourcePtr;
Inc(FSourcePtr); { check next char... }
while true do begin
case FSourcePtr^ of
#0: begin
ReadBuffer;
FStringPtr := FSourcePtr;
if FSourcePtr^ = #0 then Break;
{$IFDEF DEBUG}
writeln(Log, 'in comment');
{$ENDIF}
end;
#10: Inc(FSourceLine);
'}':
begin
Inc(FSourcePtr);
Break; { end comment... }

end;
end;
FStringPtr^ := FSourcePtr^;
Inc(FStringPtr);
Inc(FSourcePtr);

end;
FToken := toComment;
Result := FToken;

end;
'(', '/': { possible comment or compiler directive... }
begin
FStringPtr := FSourcePtr;
Inc(FSourcePtr); { check next char... }
case FSourcePtr^ of
'*': { is a comment }
begin
Inc(FSourcePtr); { check next char... }
while True do begin
case FSourcePtr^ of

#0: begin
ReadBuffer;
FStringPtr := FSourcePtr;
if FSourcePtr^ = #0 then Break;
{$IFDEF DEBUG}
writeln(Log, 'in comment');
{$ENDIF}
end;
#10: Inc(FSourceLine);
'*':
begin
Inc(FSourcePtr);
if FSourcePtr^ = ')' then begin
Inc(FSourcePtr);
Break; { end of comment }

end;
end;

end;
FStringPtr^ := FSourcePtr^;
Inc(FStringPtr);
Inc(FSourcePtr);

end;
FToken := toComment;
Result := FToken;

end;
'/': { is a comment }
begin
Inc(FSourcePtr);
while (FSourcePtr^ <> #10) do begin
{ end of line, hence comment }
FStringPtr^ := FSourcePtr^;
Inc(FStringPtr);
Inc(FSourcePtr);

end;
FToken := toComment;
Result := FToken;

end;
end;

end;
else
Result := inherited NextToken;

end;
end;

➤ Listing 8

procedure TForm1.hgsParser1OnParse(Sender: TObject; Token: Char);
begin
if (Token = toOpenTag) and ((Sender as THtmlParser).TokenString
not in ['P','p','BR','br']) then
inc(counter);

if Token = toCloseTag then
dec(counter);

if counter <> 0 then
Label1.Caption := IntToStr(counter)+' unbalanced tags';

end;

toCloseTag the function Token-
String returns the tag parameters
without the enclosing brackets.

Listing 8 shows the code in an
ThgsParser.OnParse event handler
which counts open and close tags
and reports discrepancies. Note:
There are other standalone html
tags besides
 and <P> but this
gives you the general idea for
searching out unbalanced tags.

TCSVParser
Finally, TCSVParser descends
directly from TCustomParser and
extracts the fields from comma
separated text files. I use this class
to read comma separated log files
from an intranet server and report
the results via dynamic html.

Conclusion
Though strange in appearance and
of limited use Inprise’s TParser is a

surprisingly useful tool when
slightly restructured and wrapped
in a component.

I’ve provided a simple demo
along with all the source on this
month’s free disk. Hopefully you’ll

➤ Listing 7

find the class hierarchy as useful
as I do and if you need additional
functionality it should be fairly
easy to add.

Paul Warren runs HomeGrown
Software Development in
Langley, British Columbia,
Canada and can be contacted by
email at
hg_soft@uniserve.com

	Design Considerations
	Understanding TParser
	TTextParser
	TPasParser
	A Component Wrapper
	Adding More Parsers: TEnhPasParser
	THtmlParser
	Pascal To HTML, Source Cross-Referencing And File Packing List Projects
	TCSVParser
	Conclusion

